Evaluation of Antithrombotic Activity of Thrombin DNA Aptamers by a Murine Thrombosis Model
نویسندگان
چکیده
Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4-7.1 µmol/kg (14-70 mg/kg). A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors.
منابع مشابه
The Evaluation of Pharmacodynamics and Pharmacokinetics of Anti-thrombin DNA Aptamer RA-36
Anticoagulants are a vital class of drugs, which are applied for short-term surgical procedures, and for long-term treatments for thrombosis prevention in high risk groups. Several anticoagulant drugs are commercially available, but all have intrinsic disadvantages, e.g., bleeding risks, as well as specific ones, e.g., immune response to peptide/protein drugs. Therefore, the search for novel, e...
متن کاملAnticoagulants (thrombin inhibitors) and aspirin synergize with P2Y12 receptor antagonism in thrombosis.
BACKGROUND This study was designed to determine whether (1) P2Y12 antagonism synergizes with other antithrombotics and (2) anticoagulants (thrombin inhibitors) affect the antithrombotic activity elicited by P2Y12 antagonism. METHODS AND RESULTS Thrombosis was achieved by perfusion of human and murine blood through type III collagen-coated capillaries at arterial shear rate. CT50547, a direct-...
متن کاملDesign of Potent and Controllable Anticoagulants Using DNA Aptamers and Nanostructures.
The regulation of thrombin activity offers an opportunity to regulate blood clotting because of the central role played by this molecule in the coagulation cascade. Thrombin-binding DNA aptamers have been used to inhibit thrombin activity. In the past, to address the low efficacy reported for these aptamers during clinical trials, multiple aptamers have been linked using DNA nanostructures. Her...
متن کاملA novel method of screening thrombin-inhibiting DNA aptamers using an evolution-mimicking algorithm
Thrombin-inhibiting DNA aptamers have already been obtained through the systematic evolution of ligands by exponential enrichment (SELEX). However, SELEX is a method that screens DNA aptamers that bind to their target molecules, and it sometimes fails to screen good inhibitors. Therefore, it is necessary to develop a method of screening DNA aptamers based on their inhibitory effects on the targ...
متن کاملTwo novel inhibitory anti-human factor XI antibodies prevent cessation of blood flow in a murine venous thrombosis model.
Coagulation factor XI (FXI) is a promising target for anticoagulation, because of its major role in thrombosis and relatively minor role in haemostasis. This implies that inhibition of FXI can prevent thrombosis without causing bleeding. It was our aim to investigate the antithrombotic properties of two novel inhibitory anti-human FXI antibodies (αFXI-175 and αFXI-203). The in vitro properties ...
متن کامل